题目内容
已知:在平面直角坐标系中,点A、B分别在x轴正半轴上,且线段OA、OB(OA<OB)的长分别等于方程x2﹣5x+4=0的两个根,点C在y轴正半轴上,且OB=2OC.
(1)试确定直线BC的解析式;
(2)求出△ABC的面积.
(1);(2)3
解析试题分析:(1)解方程x2﹣5x+4=0可求线段OA=1,OB=4,再确定A、B两点的坐标,根据OB=2OC,且点C在y轴正半轴上,求点C的坐标,然后根据待定系数法即可求得解析式;
(2)根据A、B的坐标求得AB的长,然后根据面积公式即可求得:
试题解析:(1)∵OA、OB的长是方程x2﹣5x+4=0的两个根,且OA<OB,
解得x1=4,x2=1,
∴OA=1,OB=4
∵A、B分别在x轴正半轴上,
∴A(1,0)、B(4,0),
又∵OB=2OC,且点C在y轴正半轴上
∴OC=2,C(0,2),
设直线BC的解析式为y=kx+b
∴,解得
∴直线BC的解析式为;
(2)∵A(1,0)、B(4,0)
∴AB="3"
∵OC=2,且点C在y轴上
∴;
考点:1.待定系数法求一次函数解析式;2.一次函数图象上点的坐标特征.
练习册系列答案
相关题目
种植草莓大户张华现有22吨草莓等售,现有两种销售渠道:一是运往省城直接批发给零售商;二是在本地市场零售.经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:
销售渠道 | 每日销量(吨) | 每吨所获纯利润(元) |
省城批发 | 4 | 1200 |
本地零售 | 1 | 2000 |
受客观因素影响,每天只能采用一种销售渠道,草莓必须在10日内售出.
(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y(元)与运往省城直接批发给零售商的草莓量x(吨)之间的函数关系式;
(2)由于草莓必须在10日内售完,请你求出x的取值范围;
(3)怎样安排这22吨草莓的销售渠道,才能使所获纯利润最大?并求出最大纯利润.