题目内容
【题目】(1)如图,在中,是高,是角平分线,当,,则____;
(2)若和的度数分别用字母和来表示(),你能找到与和之间的关系吗? ______.(请直接写出你发现的结论)
【答案】(1);(2).
【解析】
(1)依据三角形内角和定理即可得到∠BAC的度数,再根据角平分线进行计算,即可得到∠EAD的度数;
(2)直接运用(1)中的计算方法,即可得到∠EAD与α和β之间的关系.
(1)∵∠B=20°,∠C=60°,
∴在△ABC中,∠BAC=180°∠B∠C=100°,
依据AE是角平分线,得∠BAE=∠BAC=50°,
又∵AD⊥BC,
∴∠BAD=90°∠B=70°,
∴∠EAD=∠BAD∠BAE=70°50°=20°.
(2)∠EAD=(βα),
证明:在△ABC中,∠BAC=180°∠B∠C=180°αβ,
依据AE是角平分线,得∠BAE=∠BAC=90°(α+β),
又∵AD⊥BC,
∴∠BAD=90°∠B=90°α,
∴∠EAD=∠BAD∠BAE=90°α90°+(α+β)=(βα).
练习册系列答案
相关题目
【题目】从谢家集到田家庵有3路,121路,26路三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从谢家集到田家庵的用时时间,在每条线路上随机选取了450个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
用时的频数 用时 线路 | 合计 | |||
3路 | 260 | 167 | 23 | 450 |
121路 | 160 | 166 | 124 | 450 |
26路 | 50 | 122 | 278 | 450 |
早高峰期间,乘坐__________(“3路”,“121路”或“26路”)线路上的公交车,从谢家集到田家庵“用时不超过50分钟”的可能性最大.