题目内容
【题目】将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB=,则四边形AB1ED的内切圆半径为_________
【答案】
【解析】
首先作∠DAF与∠AB1C1的角平分线,交于点O,则O为该圆的圆心,过O作OF⊥AB1交AB1于点F,则OF即为所求,根据角平分线的性质可得∠OAF=30°,∠AB1O=45°,根据等腰三角形的性质以及含30°角的直角三角形性质可得B1F=x,AF=-x,接下来在Rt△OFA,利用勾股定理即可得到关于x的方程,解方程即可求解.
作∠DAF与∠AB1C1的角平分线,交于点O,过O作OF⊥AB1交AB1于点F,
AB=AB1=,∠BAB1=30°,
∵四边形AB1C1D1是正方形,∠DAF与∠AB1C1的角平分线交于点O,∠BAB1=30°
∴∠OAF=30°,∠AB1O=45°
∵OF⊥AB1
∴B1F=OF=OA
设B1F=x,则AF=-x
∴(-x)2+x2=(2x)2
解得x=或x=(舍去)
即四边AB1ED的内切圆的半径为.
故答案为:.
练习册系列答案
相关题目