题目内容
【题目】如图,正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数y=2x2﹣4的图象上,则图中阴影部分的面积之和为( )
A.6B.8C.10D.12
【答案】B
【解析】
根据抛物线和正方形的对称性求出OD=OC,并判断出S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),把点B的坐标代入抛物线解析式求出n的值得到点B的坐标,然后求解即可.
解:∵四边形ABCD为正方形,抛物线y=2x2﹣4和正方形都是轴对称图形,且y轴为它们的公共对称轴,
∴OD=OC=,S阴影=S矩形BCOE,
设点B的坐标为(n,2n)(n>0),
∵点B在二次函数y=2x2﹣4的图象上,
∴2n=2n2﹣4,
解得,n1=2,n2=﹣1(舍负),
∴点B的坐标为(2,4),
∴S阴影=S矩形BCOE=2×4=8.
故选:B.
练习册系列答案
相关题目
【题目】某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:
x(元) | 15 | 20 | 30 | … |
y(袋) | 25 | 20 | 10 | … |
若日销售量y是销售价x的一次函数,试求:
(1)日销售量y(袋)与销售价x(元)的函数关系式;
(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?