题目内容
【题目】如图,点E为矩形ABCD的边BC长上的一点,作DF⊥AE于点F,且满足DF=AB.下面结论:①△DEF≌△DEC;②S△ABE = S△ADF;③AF=AB;④BE=AF.其中正确的结论是( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】
证明Rt△DEF≌Rt△DEC得出①正确;在证明△ABE≌△DFA得出S△ABE=S△ADF;②正确;得出BE=AF,④正确,③不正确;即可得出结论.
解:∵四边形ABCD是矩形,
∴∠C=∠ABE=90°,AD∥BC,AB=CD,
∵DF=AB,
∴DF=CD,
∵DF⊥AE,
∴∠DFA=∠DFE=90°,
在Rt△DEF和Rt△DEC中,,
∴Rt△DEF≌Rt△DEC(HL),①正确;
∵AD∥BC,
∴∠AEB=∠DAF,
在△ABE和△DFA中,,
∴△ABE≌△DFA(AAS),
∴S△ABE=S△ADF;②正确;
∴BE=AF,④正确,③不正确;
正确的结论有3个,
故选:C.
练习册系列答案
相关题目