题目内容

【题目】如图,在△ABC中,AC=BC,∠ACB=90°,D是AB的中点,点E是AB边上一点.

(1)BF⊥CE于点F,交CD于点G(如图①).求证:AE=CG;
(2)AH⊥CE,垂足为H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.

【答案】
(1)证明:∵点D是AB中点,AC=BC,

∠ACB=90°,

∴CD⊥AB,∠ACD=∠BCD=45°,

∴∠CAD=∠CBD=45°,

∴∠CAE=∠BCG,

又∵BF⊥CE,

∴∠CBG+∠BCF=90°,

又∵∠ACE+∠BCF=90°,

∴∠ACE=∠CBG,

在△AEC和△CGB中,

∴△AEC≌△CGB(ASA),

∴AE=CG,


(2)解:证明:∵CH⊥HM,CD⊥ED,

∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,

∴∠CMA=∠BEC,

又∵∠ACM=∠CBE=45°,

在△BCE和△CAM中,

∴△BCE≌△CAM(AAS),

∴BE=CM.


【解析】(1)根据角的和差和中点定义,再根据全等三角形的判定方法SAS,得到AE=CG;(2)根据角的和差由AAS得到△BCE≌△CAM,再根据全等三角形的对应边相等,得到BE=CM.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网