题目内容
【题目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,连接DH,求证:(1)EH=FH;
(2)∠CAB=2∠CDH.
【答案】(1)证明见解析(2)证明见解析
【解析】试题分析:(1)根据余角的性质得到∠AFD=∠AEC,证得∠CFE=∠CEF,得到CF=CE,根据等腰三角形的性质即可得到结论.
(2)由于∠ADF=∠CHF=90°,∠AFD=∠CFH,得到△ADF∽△CFH,根据相似三角形的性质得到,由于∠AFC=∠DFH,得到△AFC∽△DFH,根据相似三角形的性质得到∠CAF=∠CDH,等量代换即可得到结论.
试题解析:
(1)证明:∵∠ACB=90°,CD⊥AB于D,
∴∠CAE+∠AEC=∠DAF+∠AFD=90°,
∵AE平分∠CAB,
∴∠CAE=∠DAF,
∴∠AFD=∠AEC,
∵∠AFD=∠CFE,
∴∠CFE=∠CEF,
∴CF=CE,
∵CH⊥EF,
∴HE=HF;
(2)证明:∵∠ADF=∠CHF=90°,∠AFD=∠CFH,
∴△ADF∽△CFH,
∴,
∵∠AFC=∠DFH,
∴△AFC∽△DFH,
∴∠CAF=∠CDH,
∵∠CAD=2∠CAF,
∴∠CAB=2∠CDH.
练习册系列答案
相关题目