题目内容

【题目】如图①,ABCD是边长为60cm的正方形硬纸片,切去四个全等的等腰直角三角形(阴影部分所示),其中E,F在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图②所示),形成有一个底面为正方形GHMN的包装盒,设AE=x (cm).

(1)求线段GF的长;(用含x的代数式表示)

(2)当x为何值时,矩形GHPF的面积S (cm2)最大?最大面积为多少?

(3)试问:此种包装盒能否放下一个底面半径为15cm,高为10cm的圆柱形工艺品,且使得圆柱形工艺品的一个底面恰好落在图②中的正方形GHMN内?若能,请求出满足条件的x的值或范围;若不能,请说明理由.

【答案】(1)30x;(2)当x=15时,S最大=450;(3)15≤x≤30﹣5

【解析】

试题分析:(1)AE=BF=x,据此即可利用x表示出等腰直角EFG的斜边EF的长,然后利用三角函数求得GF的长;

(2)首先利用矩形的面积公式表示出面积S,然后利用二次函数的性质即可求解;

(3)首先求得与正方形各边相切的线段的长度,然后判断高小于或等于10cm即可判断,然后根据NG的长不小于30cm,高不小于10cm即可列不等式求得x的范围.

解:(1)AE=BF=x

EF=AB﹣AE﹣BF=60﹣2x.

在RtGEF中,GF=EF=×(60﹣2x)=30x;

(2)NG=AE=x,即GH=NG=x,

S=x (30x)=﹣2x2+60x

=﹣2(x﹣15)2+450;

﹣2<0,

当x=15时,S最大=450;

(3)能放下.

理由是:当圆柱形工艺品与GHMN相切时,x=15

此时,30x=30﹣15×=30﹣30>10,故一定能放下.

根据题意得:

解得:15≤x≤30﹣5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网