题目内容
已知abc≠0,k=
=
=
,一次函数y=kx+k2-2k+2图象上两点为P1(xl,y1),P2 (x2,y2)且|x1-x2|=2,则|P1P2|=______.
| a+b-c |
| c |
| a-b+c |
| b |
| b+c-a |
| a |
∵k=
=
=
,
∴a+b-c=kc,①
a-b+c=kb,②
b+c-a=ka,③
由①+②+③,得
(a+b+c)=k(a+b+c),
(1)当a+b+c≠0,时,k=1;
∴y=kx+k2-2k+2=x+1,即y=x+1;
又∵一次函数y=kx+k2-2k+2图象上两点为P1(xl,y1),P2 (x2,y2)且|x1-x2|=2,
∴|y1-y2|=2,
∴|P1P2|=
=
=2
;
(2)当a+b+c=0时,a+b=-c,
则由①式,得
-2c=kc,
∵abc≠0,
∴c≠0,
∴k=-2;
y=kx+k2-2k+2=-2x+10,即y=-2x+10;
又∵一次函数y=kx+k2-2k+2图象上两点为P1(xl,y1),P2 (x2,y2)且|x1-x2|=2,
∴|y1-y2|=4,
∴|P1P2|=
=
=2
.
故答案是:2
或2
.
| a+b-c |
| c |
| a-b+c |
| b |
| b+c-a |
| a |
∴a+b-c=kc,①
a-b+c=kb,②
b+c-a=ka,③
由①+②+③,得
(a+b+c)=k(a+b+c),
(1)当a+b+c≠0,时,k=1;
∴y=kx+k2-2k+2=x+1,即y=x+1;
又∵一次函数y=kx+k2-2k+2图象上两点为P1(xl,y1),P2 (x2,y2)且|x1-x2|=2,
∴|y1-y2|=2,
∴|P1P2|=
| (x1-x2) 2+(y1-y2)2 |
| 4+4 |
| 2 |
(2)当a+b+c=0时,a+b=-c,
则由①式,得
-2c=kc,
∵abc≠0,
∴c≠0,
∴k=-2;
y=kx+k2-2k+2=-2x+10,即y=-2x+10;
又∵一次函数y=kx+k2-2k+2图象上两点为P1(xl,y1),P2 (x2,y2)且|x1-x2|=2,
∴|y1-y2|=4,
∴|P1P2|=
| (x1-x2) 2+(y1-y2)2 |
| 4+16 |
| 5 |
故答案是:2
| 2 |
| 5 |
练习册系列答案
相关题目
已知ABC的三边满足a2+b2+c2-ab-bc-ac=0,则这个三角形的形状是( )
| A、直角三角形 | B、等腰三角形 | C、等腰直角三角形 | D、等边三角形 |
| A、3<AD<4 | ||||
| B、1<AD<7 | ||||
C、
| ||||
D、
|
已知△ABC中,cosA=
,tgB=1,则△ABC的形状是( )
| 1 |
| 2 |
| A、锐角三角形 |
| B、直角三角形 |
| C、钝角三角形 |
| D、等腰三角形 |