题目内容
【题目】如图,△ABC中,AB=AC,AB是⊙O的直径,BC与⊙O交于点D,点E在AC上,且∠ADE=∠B.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为5,CE=2,求△ABC的面积.
【答案】(1)见解析;(2)S△ABC =40.
【解析】
(1)连接OD,证明OD⊥DE即可.因为AB是⊙O的直径,所以∠ADB=90°,因此∠B+∠BAD=90°.因为AO=DO,所以∠BAD=∠ADO.因为∠ADE=∠B,所以∠ADO+∠ADE=90°,即∠ODE=90°.可证DE是⊙O的切线;
(2)由AB=AC,∠ADB=90°可得点D是BC的中点,所以△ABC的面积是△ADC面积的2倍.因为点O是AB的中点,点D是BC的中点,可得AC=2DO=10,∠AED=180°-∠ODE=90°.因为CE=2,所以AE=8,根据射影定理DE2=AECE,所以DE=4,所以S△ABC=2S△ADC=2×(×ACDE)=40.
(1)连接OD,
∵AB是⊙O的直径
∴∠ADB=90°,
∴∠B+∠BAD=90°,
∵AO=DO,
∴∠BAD=∠ADO,
∵∠ADE=∠B,
∴∠ADO+∠ADE=∠BAD+∠B=90°,
即∠ODE=90°,
∴OD⊥DE,
∵OD是⊙O的半径,
∴DE是⊙O的切线;
(2)由(1)知,∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD是△ABC的中线,
∴点D是BC的中点,
又∵OB=OA,
∴DO是△ABC的中位线,
∵⊙O的半径为5,
∴AC=2DO=10,
∵CE=2,
∴AE=AC-CE=8,
∵DO是△ABC的中位线,
∴DO∥AC,
∴∠EDO+∠AED=180°,
∴∠AED=90°,
∴∠AED=∠DEC=90°,
∴∠EDC+∠C=90°,
∵ADC=180°-∠ADB=90°,
∴∠ADE+∠EDC=90°,
∴∠ADE=∠C,
∵∠AED=∠DEC,∠ADE=∠C,
∴△AED~△DEC,
∴即,
∴DE=4,
∴S△ADC=ACDE=20,
∵AD是△ABC的中线,
∴S△ABC=2S△ADC=40.
【题目】垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表
测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)