题目内容
【题目】如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
① 当时,;
② 当时,
(2)拓展探究
试判断:当0°<α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
【答案】(1) ..(2) .(3) 或.
【解析】
试题分析:(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.
②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.
(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.
(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.
试题解析:(1)①当α=0°时,
∵Rt△ABC中,∠B=90°,
∴AC=,
∵点D、E分别是边BC、AC的中点,
∴AE=÷2=,BD=8÷2=4,
∴.
②如图1,
,
当α=180°时,
可得AB∥DE,
∵,
∴=.
(2)如图2,
,
当0°≤α<360°时,的大小没有变化,
∵∠ECD=∠ACB,
∴∠ECA=∠DCB,
又∵=,
∴△ECA∽△DCB,
∴.
(3)①如图3,
,
∵AC=,CD=4,CD⊥AD,
∴AD=,
∵AD=BC,AB=DC,∠B=90°,
∴四边形ABCD是矩形,
∴BD=AC=.
②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,
,
∵AC=,CD=4,CD⊥AD,
∴AD=,
∵点D、E分别是边BC、AC的中点,
∴DE=AB=×(8÷2)=×4=2,
∴AE=AD-DE=8-2=6,
由(2),可得
,
∴BD=.
综上所述,BD的长为或.