题目内容
【题目】问题发现:
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
(1)求证:△ACD≌△BCE;
(2)求证:CD∥BE.
拓展探究:
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,连接BE,求∠AEB的度数.
【答案】问题发现:(1)证明见解析;(2)证明见解析;
拓展探究:∠AEB=90°.
【解析】
试题(1)先证出∠ACD=∠BCE,那么△ACD≌△BCE,根据全等三角形证出AD=BE;
(2)由(1)证得△ACD≌△BCE,得到∠ADC=∠BEC通过等量代换得到∠DCB=∠EBC,有内错角相等得到CD∥BE;
(3)证明△ACD≌△BCE,得出∠ADC=∠BEC,由△DCE为等腰直角三角形,得到∠CDE=∠CED=45°,因为点A,D,E在同一直线上,得到∠ADC=135°,∠BEC=135°,于是得到∠AEB=∠BEC-∠CED=90°.
试题解析:(1)∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=60°-∠CDB=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
(2)由(1)证得△ACD≌△BCE,
∴∠ADC=∠BEC,∵∠CDE=60°,
∴∠ADC=∠BEC=120°,
∵∠DCB=60°-∠BCE,∠CBE=180°-∠BEC-∠ECB=60°-∠ECB,
∴∠DCB=∠EBC,
∴CD∥BE;
(3))∠AEB=90°,AE=BE+2CM.
理由:∵△ACB和△DCE均为等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠ADC=∠BEC,
∵△DCE为等腰直角三角形,
∴∠CDE=∠CED=45°,
∵点A,D,E在同一直线上,
∴∠ADC=135°,
∴∠BEC=135°,
∴∠AEB=∠BEC-∠CED=90°.