题目内容
【题目】正比例函数y1=mx(m>0)的图象与反比例函数y2= (k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AMB的面积为8,则满足y1>y2的实数x的取值范围是 .
【答案】﹣2<x<0或x>2
【解析】解:∵正比例函数y1=mx(m>0)的图象与反比例函数y2= (k≠0)的图象交于点A(n,4)和点B, ∴B(﹣n,﹣4).
∵△AMB的面积为8,
∴ ×8×n=8,
解得n=2,
∴A(2,4),B(﹣2,﹣4).
由图形可知,当﹣2<x<0或x>2时,正比例函数y1=mx(m>0)的图象在反比例函数y2= (k≠0)图象的上方,即y1>y2 .
故答案为﹣2<x<0或x>2.
由反比例函数图象的对称性可得:点A和点B关于原点对称,再根据△AMB的面积为8列出方程 ×4n×2=8,解方程求出n的值,然后利用图象可知满足y1>y2的实数x的取值范围.
练习册系列答案
相关题目
【题目】已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x | … | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 3 | 0 | ﹣1 | 0 | m | 8 | … |
(1)可求得m的值为;
(2)求出这个二次函数的解析式;
(3)当y>3时,x的取值范围为 .