题目内容

在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.
原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.
小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.
小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60度.
小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.
请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
(1)写出原问题中DF与EF的数量关系;
(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,精英家教网你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.
分析:本题的解题思路是通过构建全等三角形来求解.先根据直角三角形的性质,等边三角形的性质得到一些隐含的条件,然后根据所得的条件来证明所构建的三角形的全等;再根据全等三角形的对应边相等得出DF=EF的猜想.
解答:解:(1)DF=EF.
(2)猜想:DF=FE.
证明:过点D作DG⊥AB于G,则∠DGB=90度.
∵DA=DB,∠ADB=60度.
∴AG=BG,△DBA是等边三角形.
∴DB=BA.
∵∠ACB=90°,∠ABC=30°,
∴AC=
1
2
AB=BG.
在Rt△DBG和Rt△BAC中
DB=AB
BG=AC

∴Rt△DBG≌Rt△BAC(HL).精英家教网
∴DG=BC.
∵BE=EC,∠BEC=60°,
∴△EBC是等边三角形.
∴BC=BE,∠CBE=60度.
∴DG=BE,∠ABE=∠ABC+∠CBE=90°.
∵∠DFG=∠EFB,∠DGF=∠EBF,
在△DFG和△EFB中
∠DFG=∠EFB
∠FGD=∠FBE
DG=BE

∴△DFG≌△EFB(AAS).
∴DF=EF.

(3)猜想:DF=FE.
证法一:过点D作DH⊥AB于H,连接HC,HE,HE交CB于K,则∠DHB=90度.
∵DA=DB,
∴AH=BH,∠1=∠HDB.
∵∠ACB=90°,
∴HC=HB.
在△HBE和△HCE中
HB=HC
BE=CE
HE=HE

∴△HBE≌△HCE(SSS).
∴∠2=∠3,∠4=∠BEH.
∴HK⊥BC.
∴∠BKE=90°.
∵∠ADB=∠BEC=2∠ABC,
∴∠HDB=∠BEH=∠ABC.
∴∠DBC=∠DBH+∠ABC=∠DBH+∠HDB=90°,
∠EBH=∠EBK+∠ABC=∠EBK+∠BEK=90°.
∴DB∥HE,DH∥BE.
∴四边形DHEB是平行四边形.
∴DF=EF.
证法二:分别过点D、E作DH⊥AB于H,EK⊥BC于K,连接HK,则
∠DHB=∠EKB=90度.
∵∠ACB=90°,
∴EK∥AC.
∵DA=DB,EB=EC,
∴AH=BH,∠1=∠HDB,
CK=BK,∠2=∠BEK.
∴HK∥AC.
∴点H、K、E在同一条直线上.
下同证法一.
点评:此题考查了全等三角形的判定和性质;等边三角形的性质的性质及直角三角形的性质等知识点,在做题时要注意隐含条件的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网