题目内容
【题目】如图,在等腰中,,点在线段上运动(不与重合),连结,作,交线段于点.
(1)当时,= °;点从点向点运动时,逐渐变 (填“大”或“小”);
(2)当等于多少时,,请说明理由;
(3)在点的运动过程中,的形状也在改变,判断当等于多少度时,是等腰三角形.
【答案】(1)35°,小;(2)当DC=3时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
【解析】
(1)根据三角形内角和定理得到∠BAD=35°,点从点向点运动时,∠BAD变大,三角形内角和定理即可得到答案;
(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,得到∠ADB=∠DEC,根据AB=DC=2,证明△ABD≌△DCE;
(3)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.
解:(1)∵∠B=40°,∠ADB=105°,
∴∠BAD=180°-∠B-∠ADB=180°-105°-40°=35°,
∵点从点向点运动时,∠BAD变大,且∠BDA=180°-40°-∠BAD
∴逐渐变小
(2)当DC=3时,△ABD≌△DCE,
理由:∵AB=AC,
∴∠C=∠B=40°,
∴∠DEC+∠EDC=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=140°,
∴∠ADB=∠DEC,
又∵AB=DC=3,
在△ABD和△DCE中,
∴△ABD≌△DCE(AAS);
(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,
当DA=DE时,∠DAE=∠DEA=70°,
∴∠BDA=∠DAE+∠C=70°+40°=110°;
当AD=AE时,∠AED=∠ADE=40°,
∴∠DAE=100°,
此时,点D与点B重合,不合题意;
当EA=ED时,∠EAD=∠ADE=40°,
∴∠AED=100°,
∴EDC=∠AED-∠C=60°,
∴∠BDA=180°-40°-60°=80°
综上所述,当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.