题目内容

如图,在矩形ABCD中,对角线AC、BD相较于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则DE的长度是          
∵四边形ABCD是矩形,∴∠ADC=90°,AC=BD=10,OA=OC=AC=5,OB=OD=BD=5,
∴OC=OD,∴∠ODC=∠OCD,∵∠EDC:∠EDA=1:2,∠EDC+∠EDA=90°,∴∠EDC=30°,∠EDA=60°,
∵DE⊥AC,∴∠DEC=90°,∴∠DCE=90°-∠EDC=60°,∴∠ODC=∠OCD=60°,∴∠ODC+∠OCD+∠DOC=180°,
∴∠COD=60°,∴△OCD是等边三角形,DE=sin60°•OD=×5=
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网