题目内容
【题目】山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年A型车每辆售价多少元?
(2)该车行计划新进一批A型车和新款B型车共60辆,要使这批车获利不少于33000元,A型车至多进多少辆?A,B两种型号车的进货和销售价格如表:
A型车 | B型车 | |
进货价格(元) | 1100 | 1400 |
销售价格(元) | 今年的销售价格 | 2000 |
【答案】(1)今年A型车每辆售价1600元;(2)要使这批车获利不少于33000元,A型车至多进30辆.
【解析】
试题分析:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利不少于33000元,由条件表示出33000与a之间的关系式,进而得出答案.
解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得:
=,
解得:x=1600.
经检验,x=1600是原方程的根.
答:今年A型车每辆售价1600元;
(2)设今年新进A型车a辆,则B型车(60﹣a)辆,由题意,得
(1600﹣1100)a+(2000﹣1400)(60﹣a)≥33000,
解得:a≤30,
故要使这批车获利不少于33000元,A型车至多进30辆.
练习册系列答案
相关题目