题目内容
【题目】如图,抛物线与直线交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).
(Ⅰ)求抛物线的解析式和tan∠BAC的值;
(Ⅱ)在(Ⅰ)条件下:
(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?(直接写出答案)
【答案】(Ⅰ)y=x2-x+3.tan∠BAC;(Ⅱ)(1)(11,36)、(,)、(,);(2)点E的坐标为(2,1).
【解析】
试题分析:(Ⅰ)只需把A、C两点的坐标代入y=x2+mx+n,就可得到抛物线的解析式,然后求出直线AB与抛物线的交点B的坐标,过点B作BH⊥x轴于H,如图1.易得∠BCH=∠ACO=45°,BC=,AC=3,从而得到∠ACB=90°,然后根据三角函数的定义就可求出tan∠BAC的值;
(Ⅱ)(1)过点P作PG⊥y轴于G,则∠PGA=90°.设点P的横坐标为x,由P在y轴右侧可得x>0,则PG=x,易得∠APQ=∠ACB=90°.若点G在点A的下方,①当∠PAQ=∠CAB时,△PAQ∽△CAB.此时可证得△PGA∽△BCA,根据相似三角形的性质可得AG=3PG=3x.则有P(x,3-3x),然后把P(x,3-3x)代入抛物线的解析式,就可求出点P的坐标②当∠PAQ=∠CBA时,△PAQ∽△CBA,同理,可求出点P的坐标;若点G在点A的上方,同理,可求出点P的坐标;(2)过点E作EN⊥y轴于N,如图3.易得AE=EN,则点M在整个运动中所用的时间可表示为.作点D关于AC的对称点D′,连接D′E,则有D′E=DE,D′C=DC,∠D′CA=∠DCA=45°,从而可得∠D′CD=90°,DE+EN=D′E+EN.根据两点之间线段最短可得:当D′、E、N三点共线时,DE+EN=D′E+EN最小.此时可证到四边形OCD′N是矩形,从而有ND′=OC=3,ON=D′C=DC.然后求出点D的坐标,从而得到OD、ON、NE的值,即可得到点E的坐标.
试题解析:(Ⅰ)把A(0,3),C(3,0)代入y=x2+mx+n,得
,解得:.
∴抛物线的解析式为y=x2-x+3.
联立,解得:或,
∴点B的坐标为(4,1).
过点B作BH⊥x轴于H,如图1.
∵C(3,0),B(4,1),
∴BH=1,OC=3,OH=4,CH=4-3=1,
∴BH=CH=1.
∵∠BHC=90°,
∴∠BCH=45°,BC=.
同理:∠ACO=45°,AC=3,
∴∠ACB=180°-45°-45°=90°,
∴tan∠BAC=;
(Ⅱ)(1)存在点P,使得以A,P,Q为顶点的三角形与△ACB相似.
过点P作PG⊥y轴于G,则∠PGA=90°.
设点P的横坐标为x,由P在y轴右侧可得x>0,则PG=x.
∵PQ⊥PA,∠ACB=90°,
∴∠APQ=∠ACB=90°.
若点G在点A的下方,
①如图2①,当∠PAQ=∠CAB时,则△PAQ∽△CAB.
∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,
∴△PGA∽△BCA,
∴.
∴AG=3PG=3x.
则P(x,3-3x).
把P(x,3-3x)代入y=x2-x+3,得
x2-x+3=3-3x,
整理得:x2+x=0
解得:x1=0(舍去),x2=-1(舍去).
②如图2②,当∠PAQ=∠CBA时,则△PAQ∽△CBA.
同理可得:AG=PG=x,则P(x,3-x),
把P(x,3-x)代入y=x2-x+3,得
x2-x+3=3-x,
整理得:x2-x=0
解得:x1=0(舍去),x2=,
∴P(,);
若点G在点A的上方,
①当∠PAQ=∠CAB时,则△PAQ∽△CAB,
同理可得:点P的坐标为(11,36).
②当∠PAQ=∠CBA时,则△PAQ∽△CBA.
同理可得:点P的坐标为P(,).
综上所述:满足条件的点P的坐标为(11,36)、(,)、(,);
(2)过点E作EN⊥y轴于N,如图3.
在Rt△ANE中,EN=AEsin45°=AE,即AE=EN,
∴点M在整个运动中所用的时间为.
作点D关于AC的对称点D′,连接D′E,
则有D′E=DE,D′C=DC,∠D′CA=∠DCA=45°,
∴∠D′CD=90°,DE+EN=D′E+EN.
根据两点之间线段最短可得:
当D′、E、N三点共线时,DE+EN=D′E+EN最小.
此时,∵∠D′CD=∠D′NO=∠NOC=90°,
∴四边形OCD′N是矩形,
∴ND′=OC=3,ON=D′C=DC.
对于y=x2-x+3,
当y=0时,有x2-x+3=0,
解得:x1=2,x2=3.
∴D(2,0),OD=2,
∴ON=DC=OC-OD=3-2=1,
∴NE=AN=AO-ON=3-1=2,
∴点E的坐标为(2,1).