题目内容

【题目】如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为

【答案】2π﹣4
【解析】解:
连接OB、OD,
∵直线AB,CD分别与⊙O相切于B,D两点,AB⊥CD,
∴∠OBP=∠P=∠ODP=90°,
∵OB=OD,
∴四边形BODP是正方形,
∴∠BOD=90°,
∵BD=4,
∴OB= =2
∴阴影部分的面积S=S扇形BOD﹣S△BOD= =2π﹣4,
所以答案是:2π﹣4.
【考点精析】认真审题,首先需要了解切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径),还要掌握扇形面积计算公式(在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2))的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网