题目内容

【题目】两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:

(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.

(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.

(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出 sinα的值.

【答案】1)过点CCG⊥ABG

Rt△ACG∵∠A60°

∴sin60°……………1

Rt△ABC∠ACB90°∠ABC30°

∴AB=2 …………………………………………2

………3

2)菱形………………………………………4

∵DAB的中点 ∴AD=DB=CF=1

Rt△ABC中,CD是斜边中线 ∴CD=1……5

同理 BF=1 ∴CD=DB=BF=CF

四边形CDBF是菱形…………………………6

3)在Rt△ABE

……………………………7

过点DDH⊥AE 垂足为H

△ADH∽△AEB ∴

∴ DH=……8

Rt△DHE

sinα==…=…………………9

【解析】

1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABCAC=1,即可求得BC的长,从而求得其面积;

2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;

3)过D点作DH⊥AEH,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网