题目内容

【题目】如图1所示,点EF在线段AC上,过EF分别作DEACBFAC,垂足分别为点EFDEBF分别在线段AC的两侧,且AE=CFAB=CDBDAC相交于点G.

(1)求证:EG=GF

(2)若点EF的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.

(3)若点EF分别在线段CA的延长线与反向延长线上,其余条件不变,(1)中结论是否成立?(要求:在备用图中画出图形,直接判断,不必说明理由)

【答案】(1)证明见解析;(2)成立,理由见解析;(3)成立,图形见解析.

【解析】

(1)先利用HL证明Rt△ABF≌Rt△CDE,从而得到ED=FB,然后再根据AAS证明△BFG≌△DGE,从而可证得EG=FG;

(2)先证AF=EC,然后利用HL证明Rt△ABF≌Rt△CDE,从而得到BF=DE,然后利用AAS证明△BFG≌△DGE,从而可得到EG=FG;

(3)先根据要求画出图形,然后依据HL证明Rt△ABF≌Rt△CDE,从而得到BF=DE,然后利用AAS证明△BFG≌△DGE,从而可得到EG=FG.

解:(1)证明:∵DE⊥AC,BF⊥AC,

∴∠DEG=∠BFG=90°.

∵AE=CF,

∴AE+EF=CF+EF.

∴AF=CE.

在Rt△ABF和Rt△CDE中,

∴Rt△ABF≌Rt△CDE(HL),

∴BF=DE.

在△BFG和△DEG中

∴△BFG≌△DGE(AAS).

∴EG=FG.

(2)解:(1)中结论依然成立.

理由如下:∵AE=CF,

∴AE﹣EF=CF﹣EF.

∴AF=CE.

∵DE⊥AC,BF⊥AC,

∴∠DEG=∠BFG=90°.

在Rt△ABF和Rt△CDE中,

∴Rt△ABF≌Rt△CDE(HL).

∴BF=DE.

在△BFG和△DEG中,

∴△BFG≌△DGE(AAS).

∴EG=FG.

(3)(1)中结论依然成立.

如图所示:

理由如下:∵AE=CF,

∴AE+AC=CF+AC.

∴CE=AF.

∵DE⊥AC,BF⊥AC,

∴∠DEG=∠BFA=90°.

在Rt△ABF和Rt△CDE中,

∴Rt△ABF≌Rt△CDE(HL).

∴BF=DE.

在△BFG和△DEG中,

∴△BFG≌△DGE(AAS).

∴EG=FG.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网