题目内容

【题目】如图,△OBC的边BCx轴,过点C的双曲线y=(k0)与△OBC的边OB交于点D,且ODDB=12,若△OBC的面积等于8,则k的值为__

【答案】2

【解析】

延长BCy轴于点E,过点DDFx轴于点FBAx轴于A.由矩形与反比例函数的性质,可得S四边形ABDF=SOBC=8,易证得△ODF∽△OBA,又由ODDB=12,即可得SODF=S四边形ABDF=×4=,则可求得答案.

解:延长BCy轴于点E,过点DDFx轴于点FBAx轴于A

∵梯形ABCO的底边AOx轴上,BCAOABAO

∴四边形OABE是矩形,

SOBE=SOAB

∵过点C的双曲线y=OB于点D

SOCE=SODF

S四边形ABDF=SOBC=8

DFAB

∴△ODF∽△OBA

ODDB=12

ODOB=13

SODFSOAB=19

SODFS四边形ABDF=18

SODF=S四边形ABDF=×8=1

k=2

故答案为:2

练习册系列答案
相关题目

【题目】(问题)用n2×1矩形,镶嵌一个n矩形,有多少种不同的镶嵌方案?(n矩形表示矩形的邻边是2n

(探究)不妨假设有an种不同的镶嵌方案.为探究an的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.

探究一:用12×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案?

如图(1),显然只有1种镶嵌方案.所以,a11

探究二:用22×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?

如图(2),显然只有2种镶嵌方案.所以,a22

探究三:用32×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?

一类:在探究一每个镶嵌图的右侧再横着镶嵌22×1矩形,有1种镶嵌方案;

二类:在探究二每个镶嵌图的右侧再竖着镶嵌12×1矩形,有2种镶嵌方案;

如图(3).所以,a31+23

探究四:用42×1矩形,镶嵌一个2×4矩形,有多少种不同的镶嵌方案?

一类:在探究二每个镶嵌图的右侧再横着镶嵌22×1矩形,有   种镶嵌方案;

二类:在探究三每个镶嵌图的右侧再竖着镶嵌12×1矩形,有   种镶嵌方案;

所以,a4   

探究五:用52×1矩形,镶嵌一个2×5矩形,有多少种不同的镶嵌方案?

(仿照上述方法,写出探究过程,不用画图)

……

(结论)用n2×1矩形,镶嵌一个n矩形,有多少种不同的镶嵌方案?

(直接写出anan1an2的关系式,不写解答过程).

(应用)用102×1矩形,镶嵌一个2×10矩形,有   种不同的镶嵌方案.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网