题目内容

(1)求四边形ABCD的面积和周长;
(2)∠ACD是直角吗?
分析:首先根据勾股定理求得AB、BC、CD、DA、AC的长,判断∠ABC和∠ACD是直角.即可求解.
解答:解:根据勾股定理得到:AD=
=
=5
;AB=
=
=2
;CD=
=5;BC=
=
.
AC=
=5.

∴四边形ABCD的周长是:AB+BC+CD+AD=5
+2
+
+5=5
+3
+5;
∵(2
)2+(
)2=52,52+52=(5
)2.
∴BC2+AB2=AC2,AC2+CD2=AD2.
∴∠ABC和∠ACD是直角.
∴四边形ABCD的面积=直角△ABC的面积+直角△ACD的面积=
BC•AB+
AC•CD=17.5.
72+12 |
50 |
2 |
22+42 |
20 |
5 |
32+42 |
12+22 |
5 |
AC=
42+32 |

∴四边形ABCD的周长是:AB+BC+CD+AD=5
2 |
5 |
5 |
2 |
5 |
∵(2
5 |
5 |
2 |
∴BC2+AB2=AC2,AC2+CD2=AD2.
∴∠ABC和∠ACD是直角.
∴四边形ABCD的面积=直角△ABC的面积+直角△ACD的面积=
1 |
2 |
1 |
2 |
点评:本题主要运用勾股定理的逆定理,正确判断∠ABC和∠ACD是直角.是解决本题的关键.

练习册系列答案
相关题目