题目内容
【题目】在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.
(1)已知a=1,点B的纵坐标为2.
①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.
②如图2,若BD= AB,过点B,D的抛物线L2 , 其顶点M在x轴上,求该抛物线的函数表达式.
(2)如图3,若BD=AB,过O,B,D三点的抛物线L3 , 顶点为P,对应函数的二次项系数为a3 , 过点P作PE∥x轴,交抛物线L于E,F两点,求 的值,并直接写出 的值.
【答案】
(1)
解:①二次函数y=x2,当y=2时,2=x2,
解得x1= ,x2=﹣ ,
∴AB=2 .
∵平移得到的抛物线L1经过点B,
∴BC=AB=2 ,
∴AC=4 .
②作抛物线L2的对称轴与AD相交于点N,如图2,
根据抛物线的轴对称性,得BN= DB= ,
∴OM= .
设抛物线L2的函数表达式为y=a(x﹣ )2,
由①得,B点的坐标为( ,2),
∴2=a( ﹣ )2,
解得a=4.
抛物线L2的函数表达式为y=4(x﹣ )2
(2)
解:如图3,抛物线L3与x轴交于点G,其对称轴与x轴交于点Q,
过点B作BK⊥x轴于点K,
设OK=t,则AB=BD=2t,点B的坐标为(t,at2),
根据抛物线的轴对称性,得OQ=2t,OG=2OQ=4t.
设抛物线L3的函数表达式为y=a3x(x﹣4t),
∵该抛物线过点B(t,at2),
∴at2=a3t(t﹣4t),
∵t≠0,
∴ =﹣ ,
由题意得,点P的坐标为(2t,﹣4a3t2),
则﹣4a3t2=ax2,
解得,x1=﹣ t,x2= t,
EF= t,
∴ = .
【解析】(1)①根据函数解析式求出点A、B的坐标,求出AC的长;②作抛物线L2的对称轴与AD相交于点N,根据抛物线的轴对称性求出OM,利用待定系数法求出抛物线的函数表达式;(2)过点B作BK⊥x轴于点K,设OK=t,得到OG=4t,利用待定系数法求出抛物线的函数表达式,根据抛物线过点B(t,at2),求出 的值,根据抛物线上点的坐标特征求出 的值.