题目内容
【题目】在平面直角坐标系中,点 A(a,6),B(4,b),
(1)若 a,b 满足 (a b 5)2 0 ,
①求点 A,B 的坐标;
②点 D 在第一象限,且点 D 在直线 AB 上,作 DC⊥x 轴于点 C,延长 DC 到 P 使 得 PC=DC,若△PAB 的面积为 10,求 P 点的坐标;
(2)如图,将线段 AB 平移到 CD,且点 C 在 x 轴负半轴上,点 D 在 y 轴负半轴上, 连接 AC 交 y 轴于点 E,连接 BD 交 x 轴于点 F,点 M 在 DC 延长线上,连 EM,3∠MEC+∠CEO=180°,点 N 在 AB 延长线上,点 G 在 OF 延长线上,∠NFG= 2∠NFB,请探究∠EMC 和∠BNF 的数量关系,给出结论并说明理由.
【答案】(1)①A(2,6),B(4,3).②P(,-5).(2)∠BNF-∠EMC=30°,理由见解析.
【解析】
(1)①利用非负数的性质构建方程组解决问题即可.
②由题意AB的解析式为y=-x+9,设D(m,-m+9),利用三角形的面积,构建方程解决问题即可.
(2)结论:∠BNF-∠EMC=30°.设∠MEC=α,∠BFN=β,首先证明α-β=30°,再利用平行四边形的性质,三角形的外角的性质解决问题即可.
(1)①∵(a+b-5)2+|2a-b-1|=0,
又∵(a+b-5)2≥0,|2a-b-1|≥0,
∴,
∴,
∴A(2,6),B(4,3).
②如图1中,
∵A(2,6),B(4,3),
∴直线AB的解析式为y=-x+9,设D(m,-m+9),
∵CD=PC,
∴PD=-3m+18,
∵S△PAB=10,
∴×PD×2=10,
∴-3m+18=10,
∴m=,
∴D(,5),
∴P(,-5).
(2)结论:∠BNF-∠EMC=30°.
理由:设∠MEC=α,∠BFN=β,
∵3∠MEC+∠CEO=180°,∠AEO+∠CEO=180°,
∴∠AEO=3α,
∵∠NFG=2∠BFN,
∴∠NFG=2β,∠OFD=∠BFG=3β,
∵AB=CD,AB∥CD,
∴四边形ABDC是平行四边形,
∴AC∥BD,∠ACD=∠ABD,
∴∠BDE=180°-∠AEO=180°-3α,
∵∠BDE+∠OFD=90°,
∴180°-3α+3β=90°,
∴α-β=30°,
∵∠ACD=∠EMC+∠MEC,∠ABD=∠BFN+∠BNF,
∴∠EMC+α=∠BNF+β,
∴∠BNF-∠EMC=α-β=30°.