题目内容
【题目】阅读下面材料:
上课时李老师提出这样一个问题:对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范围.
小捷的思路是:原不等式等价于x2﹣2x﹣1>a,设函数y1=x2﹣2x﹣1,y2=a,画出两个函数的图象的示意图,于是原问题转化为函数y1的图象在y2的图象上方时a的取值范围.
请结合小捷的思路回答:
对于任意实数x,关于x的不等式x2﹣2x﹣1﹣a>0恒成立,则a的取值范围是 .
参考小捷思考问题的方法,解决问题:
关于x的方程x﹣4=在0<a<4范围内有两个解,求a的取值范围.
【答案】(1)a<﹣2;(2)﹣1<a<3
【解析】试题分析:请结合小捷的思路回答:直接根据函数的顶点坐标可得出a的取值范围;设y1=x2-4x+3,y2=a,记函数y1在0<x<4内的图象为G,于是原问题转化为y2=a与G有两个交点时a的取值范围,结合图象可得出结论;
试题解析:
解:请结合小捷的思路回答:
由函数图象可知,a<﹣2时,关于x的不等式x2﹣2x﹣1﹣a>0恒成立.
故答案为:a<﹣2.
解决问题:将原方程转化为x2﹣4x+3=a,
设y1=x2﹣4x+3,y2=a,记函数y1在0<x<4内的图象为G,于是原问题转化为y2=a与G有两个交点时a的取值范围,结合图象可知,a的取值范围是:﹣1<a<3.
练习册系列答案
相关题目
【题目】甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:
向上点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现次数 | 8 | 10 | 7 | 9 | 16 | 10 |
(1)计算出现向上点数为6的频率.
(2)丙说:“如果抛600次,那么出现向上点数为6的次数一定是100次.”请判断丙的说法是否正确并说明理由.
(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.