题目内容
以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.
(1)请猜想四边形ADEF是什么特殊四边形?并说明理由.
(2)当△ABC满足条件___________时,四边形ADEF为矩形;
(3) 当△ABC满足条件___________时,四边形ADEF不存在.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230336380904906.png)
(1)请猜想四边形ADEF是什么特殊四边形?并说明理由.
(2)当△ABC满足条件___________时,四边形ADEF为矩形;
(3) 当△ABC满足条件___________时,四边形ADEF不存在.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230336380904906.png)
(1) 四边形ADEF是平行四边形,证明见解析;
(2)∠BAC=150°;
(3)∠BAC=60°.
(2)∠BAC=150°;
(3)∠BAC=60°.
试题分析:(1)可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;
(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;
(3)根据∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.
试题解析:(1)四边形ADEF是平行四边形;
∵△ABD,△BCE都是等边三角形,
∴∠DBE=∠ABC=60°﹣∠ABE,AB=BD,BC=BE.
在△ABC和△DBE中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230336381221287.png)
∴△ABC≌△DBE(SAS).
∴DE=AC.
又∵AC=AF,
∴DE=AF.
同理可得EF=AD.
∴四边形ADEF是平行四边形;
(2)∵四边形ADEF是平行四边形,
∴当∠DAF=90°时,四边形ADEF是矩形,
∴∠FAD=90°.
∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.
则当∠BAC=150°时,四边形ADEF是矩形;
(3)当∠BAC=60°时,∠DAF=180°,
此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230336381376409.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目