题目内容
【题目】如图,Rt△CEF中,∠C=90°,∠CEF, ∠CFE外角平分线交于点A,过点A分别作直线CE、CF的垂线,B、D为垂足.
(1)求证:四边形ABCD是正方形,
(2)已知AB的长为6,求(BE+6)(DF+6)的值,
(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,则HR= .
【答案】(1)见解析;(2)72;(3)3.
【解析】
(1)根据三个角是直角的四边形先证得四边形ABCD是矩形,再过点A作AG⊥EF于点G,根据角平分线的性质得出AB=AG= AD,问题即得解决;
(2)如图1,通过两次运用HL可证得EF=BE+DF,再设BE=x,DF=y,在Rt△CEF中,根据勾股定理得出关于x、y的等式,再整体代入展开整理后的式子即可得到答案;
(3)如图3,作△PRH关于PR对称的△PRN,作△PQH关于PQ对称的△PQM,NR和MQ的延长线交于点K,先根据邻边相等的矩形是正方形证明四边形PNKM是正方形,再根据(2)的结论即可求出结果.
解:(1)证明:∵AD⊥CD,AB⊥CB,∠C=90°,
∴四边形ABCD是矩形,
如图1,过点A作AG⊥EF于点G,
∵AF平分∠DFE,AD⊥CD,
∴AG=AD,
同理可得:AG=AB,
∴AB=AD.
∴矩形ABCD是正方形.
(2)在Rt△ADF和Rt△AGF中,
∴Rt△ADF≌Rt△AGF(HL).
∴DF=GF,
同理可得BE=GE.
∴EF=GE+GF=BE+DF.
设BE=EG=x,DF=FG=y,则CE=6-x,CF=6-y,如图2:
在Rt△CEF中,根据勾股定理得:,即,整理得:.
∴.
(3)如图3,作△PRH关于PR对称的△PRN,作△PQH关于PQ对称的△PQM,NR和MQ的延长线交于点K,则PN=PH=6,PM=PH=6,∠2=∠1,∠4=∠3,∠N=∠PHR=90°,∠M=∠PHQ=90°,MQ=HQ=2,NR=HR,
∴PN=PM=6,
∵∠1+∠3=45°,
∴∠1+∠2+∠3+∠4=90°,即∠NPM=90°,
∴四边形PNKM是正方形.
∵RQ=RH+HQ=NR+QM,
∴由(2)题的结论知:,
即,解得,即HR=3.
故答案为3.