题目内容
【题目】已知a、b、c为ABC的内角A、B、C所对应的边,满足下列条件的三角形不是直角三角形的是
A. ∠C=∠A∠BB. a:b:c = 1 : :
C. ∠A∶∠B∶∠C=5∶4∶3D. ,
【答案】C
【解析】
根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,三角形内角和为180°进行分析即可.
A、∵∠A+∠B+∠C=180°,
∴∠C=180°-∠A-∠B
∵∠C=∠A-∠B
∴∠A=90°
∴是直角三角形,故此选项不符合题意;
B、∵12+()2=22,∴是直角三角形,故此选项不合题意;
C、∵∠A:∠B:∠C=5:4:3,
∴设∠A=5x,∠B=4x,∠C=3x,
∵∠A+∠B+∠C=180°,
∴x=15°
∠A=75°,∠B=60°,∠C=45°
∴不是直角三角形,故此选项符合题意;
D、∵b2=a2-c2,
∴a2=b2+c2,是直角三角形,故此选项不合题意;
故选C.
【题目】某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).
运行区间 | 成人票价(元/张) | 学生票价(元/张) | ||
出发站 | 终点站 | 一等座 | 二等座 | 二等座 |
南靖 | 厦门 | 26 | 22 | 16 |
若师生均购买二等座票,则共需1020元.
(1)参加活动的教师和学生各有多少人?
(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.
①求y关于x的函数关系式;
②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?
【题目】某校为了了解八年级学生的身体素质情况,该校体育老师从八年级学生中随机抽取了50名进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下的统计图表:
组别 | 次数 | 频数(人数) |
第1组 | 6 | |
第2组 | 8 | |
第3组 | ||
第4组 | 18 | |
第5组 | 6 |
请结合图表完成下列问题:
(1)表中的______ ;
(2)请把频数分布直方图补充完整;
(3)所抽取的50名学生跳绳成绩的中位数落在哪一组?
(4)该校八年级学生共有500人,若规定一分钟跳绳次数()在时为达标,请估计该校八年级学生一分钟跳绳有多少人达标?
【题目】某农户共摘收水蜜桃1920千克,为寻求合适的销售价格,进行了6天试销,试销情况如下:
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | |
售价 x(元/千克) | 20 | 18 | 15 | 12 | 10 | 9 |
销售量 y(千克) | 45 | 50 | 60 | 75 | 90 | 100 |
由表中数据可知,试销期间这批水蜜桃的每天销售量y(千克)与售价x(元/千克)之间满足我们曾经学过的某种函数关系.若在这批水蜜桃的后续销售中,每天的销售量y(千克)与售价x(元/千克)之间都满足这一函数关系.
(1)你认为y与x之间满足什么函数关系?并求y关于x的函数表达式.
(2)在试销6天后,该农户决定将这批水密桃的售价定为15元/千克.
① 若每天都按15元/千克的售价销售,则余下的水蜜桃预计还要多少天可以全部售完?
② 该农户按15元/千克的售价销售20天后,发现剩下的水蜜桃过于成熟,必须在不超过2天内全部售完,因此需要重新确定一个售价,使后面2天都按新的售价销售且能如期全部售完,则新的售价最高可以定为多少元/千克?