题目内容

【题目】如图,在平面直角坐标系xOy中,平行四边形OABC的顶点A,B的坐标分别为(6,0),(7,3),将平行四边形OABC绕点O逆时针方向旋转得到平行四边形OA′B′C′,当点C′落在BC的延长线上时,线段OA′交BC于点E,则线段C′E的长度为

【答案】5
【解析】解:∵OC=OC′,CC′⊥y轴,A,B的坐标分别为(6,0),(7,3),
∴点C到y轴的距离:7﹣6=1.
∴O′C=O′C′=1,O点到CC′的距离是3,
∴OC=OC′= ,SOCC′= ×2×3=3.
如图,过点C作CD⊥OC′于点D,则 OC′CD=3,
∴CD= ,sin∠COC′= = ,tan∠COC′=
∵∠COC′+∠COE=∠AOE+∠COE,
∴∠COC′=∠AOE,
∴tan∠AOE=tan∠COC′=
如图,过E作x轴的垂线,交x轴于点F,

则EF=OO'=3.
∵tan∠AOE=
∴OF= =4,
∵OF=O′E=4,
∴C′E=O′E+O′C′=4+1=5.
故答案为:5.
过点C作CD⊥OC′于点D.利用旋转的性质和面积法求得CD的长,然后通过解直角三角形推知:tan∠COC′= .结合图形和旋转的性质得到∠COC′=∠AOE,自点E向x轴引垂线,交x轴于点F,则EF=3.利用等角的正切值相等tan∠AOE=tan∠COC′= = ,进而求得OF的长度,则C′E=O′E+O′C=4+1=5.

练习册系列答案
相关题目

【题目】我们来定义下面两种数:

(一)平方和数:若一个三位数或者三位以上的整数分拆成最左边、中间、最右边三个数后满足:中间数=(最左边数)2+(最右边数)2,我们就称该整数为平方和数.

例如:对于整数251.它中间的数字是5,最左边数是2,最右边数是1

是一个平方和数

又例如:对于整数3254,它的中间数是25,最左边数是3,最右边数是4

是一个平方和数.当然1524253这两个数也是平方和数;

(二)双倍积数:若一个三位数或者三位以上的整数分拆成最左边、中间、最右边三个数后满足:中间数=最左边数最右边数,我们就称该整数为双倍积数.

例如:对于整数163,它的中间数是6,最左边数是1,最右边数是3

是一个双倍积数,

又例如:对于整数3305,它的中间数是30,最左边数是3,最右边数是5

是一个双倍积数,当然3615303这两个数也是双倍积数.

注意:在下面的问题中,我们统一用字母表示一个整数分拆出来的最左边数,用字母表示该整数分拆出来的最右边数,请根据上述定义完成下面问题:

1)①若一个三位整数为平方和数,且十位数为4,则该三位数为________

②若一个三位整数为双倍积数,且十位数字为 6 ,则该三位数为_________

③若一个整数既为平方和数,又是双倍积数,则应满足的数量关系为_______

2)若(即这是个最左边数为,中间数为565,最右边数为的整数,以下类同)是一个平方和数,是一个双倍积数,求的值.

3)从所有三位整数中任选一个数为双倍积数的概率.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网