题目内容
【题目】如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△CDE,使得点D恰好落在AB上,连接BE,则BE的长度为 .
【答案】
【解析】解:∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,
∴AB=2,BC= ,
∵∠A=60°,将△ABC绕点C逆时针旋转至△CDE,
∴AC=DC,
∴△ADC是等边三角形,
∴AD= AB=1,
∴DC=DB,
∴∠DCB=∠DBC=30°,
∵△CDE是△ABC旋转而成,
∴∠DCE=90°,BC=EC,
∴∠ECB=90°﹣30°=60°,
∴△BCE是等边三角形,
∴BE=BC= .
所以答案是: .
【考点精析】解答此题的关键在于理解含30度角的直角三角形的相关知识,掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,以及对旋转的性质的理解,了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.
练习册系列答案
相关题目