题目内容
【题目】如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.
(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;
(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;
(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.
【答案】(1)PN与⊙O相切.证明见解析;(2)成立.证明见解析;(3)
【解析】试题分析:(1)根据切线的判定得出∠PNO=∠PNM+∠ONA=∠AMO+∠ONA进而求出即可;
(2)根据已知得出∠PNM+∠ONA=90°,进而得出∠PNO=180°-90°=90°即可得出答案;
(3)首先根据外角的性质得出∠AON=60°进而利用扇形面积公式得出即可.
试题解析:(1)PN与⊙O相切.
证明:连接ON,
则∠ONA=∠OAN,
∵PM=PN,
∴∠PNM=∠PMN,
∵∠AMO=∠PMN,
∴∠PNM=∠AMO,
∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°,
即PN与⊙O相切.
(2)成立.
证明:连接ON,
则∠ONA=∠OAN,
∵PM=PN,
∴∠PNM=∠PMN,
在Rt△AOM中,∠OMA+∠OAM=90°,
∴∠PNM+∠ONA=90°.
∴∠PNO=180°-90°=90°.
即PN与⊙O相切.
(3)连接ON,
由(2)可知∠ONP=90°.
∵∠AMO=30°,PM=PN,
∴∠PNM=30°,∠OPN=60°,
∴∠PON=30°,∠AON=60°,
作NE⊥OD,垂足为点E,
则NE=ONsin30°=1×=,
S阴影=S△AOC+S扇形AON-S△CON
=OCOA+×π×12-CONE
=×1×1+π-×1×
=+π.