题目内容
【题目】某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
【答案】(1)9万元 (2)共有5种进货方案 (3)购买A款汽车6辆,B款汽车9辆时对公司更有利
【解析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.
(2)关系式为:公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆.
(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.
(1)设今年5月份A款汽车每辆售价m万元.则:
,
解得:m=9.
经检验,m=9是原方程的根且符合题意.
答:今年5月份A款汽车每辆售价9万元;
(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,根据题意得:
99≤7.5x+6(15﹣x)≤105.
解得:6≤x≤10.
∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;
(3)设总获利为W万元,购进A款汽车x辆,则:
W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.
当a=0.5时,(2)中所有方案获利相同.
此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.