题目内容

观察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

(1)按规律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
 

(2)若n为正整数,化简:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
,并写出求解过程.
分析:根据给出的算式可发现规律为:
1
n(n+1)
=
1
n
-
1
n+1
,按此规律将所给式子展开化简即可求得.
解答:解:(1)按规律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+
1
5
-
1
6
=1-
1
6
=
5
6
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=1-
1
100
=
99
100

(2)
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)

=
1
n
-
1
n+1
+
1
n+1
-
1
n+2
+…+
1
n+99
-
1
n+100

=
1
n
-
1
n+100
点评:此题主要考查学生对规律型题的掌握情况.注意此题的规律为:
1
n(n+1)
=
1
n
-
1
n+1
.掌握由特殊到一般的归纳方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网