题目内容
【题目】如图,在ABCD中,对角线AC⊥BC,∠BAC=30°,BC=2,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP=60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,则AF=_____.
【答案】
【解析】
如图,连接PC交AB于T,作PN⊥AB于N,CM⊥PC交PE的延长线于M.首先证明∠APC=90°,解直角三角形求出AC,PA,利用相似三角形的性质求出CM,由CM∥PA,推出,由此即可解决问题.
解:如图,连接PC交AB于T,作PN⊥AB于N,CM⊥PC交PE的延长线于M.
∵AC⊥BC,
∴∠ACB=90°,
∵BC=,∠BAC=30°,
∴AB=2BC=,AC=
BC=6,∠ABC=60°,
∵∠EPB=∠EBP=60°,
∴△EPB是等边三角形,
∴∠PEB=60°,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BCE=180°﹣∠ABC=120°,
∴∠EPB+∠BCE=180°,
∴P,B,C,E四点共圆,
∴∠PCB=∠PEB=60°,∠MPC=∠EBC,
∵∠TCB=∠CBT=60°
∴△TCB是等边三角形,
∴∠BCT=60°,∠ACT=30°,BT=BC=AT=,
∵∠BAG=∠BAC=30°,
∴∠APC=90°,
∴PA=ATcos30°=3,AN=PAcos30°=,PN=
PA=
,PC=
PA=
,
∴BN=AB﹣AN=,
∵∠PBE=∠CBT=60°,
∴∠PBN=∠CBE=∠CPM,
∵∠PCM=∠PNB=90°,
∴△PCM∽△BNP,
∴,
∴,
∴CM=,
∵PA⊥PC,CM⊥PC,
∴CM∥PA,
∴,
∴AF=AC=
.
故答案为.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某电视机厂要印制产品宣传材料甲印刷厂提出:每份材料收1元印制费,另需收取所有印制材料的制版费1500元;乙印刷厂提出:每份材料收2.5元印制费,不收制版费.设该电视厂在同一个印刷厂一次印的数量为份
.
(1)根据题意填表:
一次印制数量(份) | 300 | 500 | 1500 | … |
甲印刷厂花费(元) | 2000 | … | ||
乙印刷厂花费(元) | 1250 | … |
(2)设在甲印刷厂花费元,在乙印刷厂花费
元,分别求
,
关于
的函数解析式;
(3)根据题意填空:
①若电视厂在甲印刷厂和在乙印刷厂一次印制宣传材料的数量相同,且花费相同,则该电视厂在同一个印刷厂一次印制材料的数量为 份;
②印制800份宣传材料时,选择 印刷厂比较合算;
③电视机厂拟拿出3000元用于印制宣传材料,在 印刷厂印制宣传材料可以多一些.