题目内容
【题目】已知△ABC中的∠A与∠B满足(1-tanA)2+=0.
(1)试判断△ABC的形状;
(2)求(1+sinA)2-2-(3+tanC)0的值.
【答案】(1)△ABC是锐角三角形;(2).
【解析】
试题(1)根据绝对值的性质求出tanA及sinB的值,再根据特殊角的三角函数值求出∠A及∠B的度数,进而可得出结论;
(2)根据(1)中∠A及∠B的值求出∠C的数,再把各特殊角的三角函数值代入进行计算即可.
试题解析:(1)∵|1-tanA)2+|sinB-|=0,
∴tanA=1,sinB=,
∴∠A=45°,∠B=60°,∠C=180°-45°-60°=75°,
∴△ABC是锐角三角形;
(2)∵∠A=45°,∠B=60°,∠C=180°-45°-60°=75°,
∴原式=(1+)2-2
-1
=.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目