题目内容
【题目】如图,正方形ABCD中,以BC为边向正方形内部作等边△BCE.连接AE.DE,连接BD交CE于F,下列结论:①∠AED=150°②△DEF~△BAE;③tan∠ECD=④△BEC的面积:△BFC的面积(+1):2,其中正确的结论有( )个.
A.4B.3C.2D.1
【答案】A
【解析】
①利用正方形的性质,等边三角形的性质,等腰三角形的性质及三角形的内角和,周角求得判定即可;
②由①可得到∠ADE的度数,再利用正方形的性质即可得∠DEF=∠ABE,即可判定;
③可利用含30°的直角三角形的性质即可分别求出,再与tan∠ECD=tan30°作比较即可;
④两个三角形的底相同,由高的比进行判定即可.
∵△BEC为等边三角形
∴∠EBC=∠BCE=∠ECB=60°,AB=EB=EC=BC=DC
∵四边形ABCD为正方形
∴∠ABE=∠ECD=90°﹣60°=30°
∴在△ABE和△DCE中,
AB=DC
∠ABE=∠ECD
BE=EC
∴△ABE≌△DCE(SAS)
∴∠AEB=∠DEC==75°
∴∠AED=360°﹣60°﹣75°×2=150°
故①正确
由①知AE=ED
∴∠EAD=∠EDA=15°
∴∠EDF=45°﹣15°=30°
∴∠EDF=∠ABE
由①知∠AEB=∠DEC,
∴△DEF~△BAE
故②正确
过点F作FM⊥DC交于M,如图
设DM=x,则FM=x,DF=x
∵∠FCD=30°
∴MC=x
则在Rt△DBC中,BD=
∴BF=BD﹣DF=
则
∵tan∠ECD=tan30°=
∴tan∠ECD=
故③正确
如图过点E作EH⊥BC交于H,过F作FG⊥BC交于G,得
由③知MC=,MC=FG
∴FG=
∵BC=DC=x
∴BH=
∵∠EBC=60°
∴EH=
∴
故④正确
故选:A.
练习册系列答案
相关题目