题目内容
【题目】将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图1摆放,点D为AB边的中点,DE交AC于点P,DF经过点C,且BC=2.
(1)求证:△ADC∽△APD;
(2)求△APD的面积;
(3)如图2,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.
【答案】(1)见解析;(2) ;(3) 不会随着α的变化而变化
【解析】
(1)先判断出△BCD是等边三角形,进而求出∠ADP=∠ACD,即可得出结论;
(2)求出PH,最后用三角形的面积公式即可得出结论;
(3)只要证明△DPM和△DCN相似,再根据相似三角形对应边成比例即可证明.
(1)证明:∵△ABC是直角三角形,点D是AB的中点,
∴AD=BD=CD,
∵在△BCD中,BC=BD且∠B=60°,
∴△BCD是等边三角形,
∴∠BCD=∠BDC=60°,
∴∠ACD=90°-∠BCD=30°,
∠ADE=180°-∠BDC-∠EDF=30°,
在△ADC与△APD中,∠A=∠A,∠ACD=∠ADP,
∴△ADC∽△APD.
(2)由(1)已得△BCD是等边三角形,∴BD=BC=AD=2,
过点P作PH⊥AD于点H,
∵∠ADP=30°=90°-∠B=∠A,
∴AH=DH=1, tanA=,
∴PH=.
∴△APD的面积=AD·PH=
(3)的值不会随着α的变化而变化.
∵∠MPD=∠A+∠ADE=30°+30°=60°,∴∠MPD=∠BCD=60°,
在△MPD与△NCD中,∠MPD=∠NCD=60°,∠PDM=∠CDN=α,
∴△MPD∽△NCD,∴,
由(1)知AD=CD,∴,
由(2)可知PD=2AH,∴PD=,
∴.
∴的值不会随着α的变化而变化.