题目内容
【题目】如图①,矩形中,,,将绕点从处开始按顺时针方向旋转,交边(或)于点,交边(或)于点.当旋转至处时,的旋转随即停止.
(1)特殊情形:如图②,发现当过点时,也恰好过点,此时是否与相似?并说明理由;
(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;
(3)拓展延伸:设时,的面积为,试用含的代数式表示;
①在旋转过程中,若时,求对应的的面积;
②在旋转过程中,当的面积为4.2时,求对应的的值.
【答案】(1)相似;(2)定值,;(3)①2,②.
【解析】
(1)根据“两角相等的两个三角形相似”即可得出答案;
(2)由得出,又为定值,即可得出答案;
(3)先设结合得出
①将t=1代入中求解即可得出答案;
②将s=4.2代入中求解即可得出答案.
(1)相似
理由:∵,,
∴,
又∵,
∴;
(2)
在旋转过程中的值为定值,
理由如下:过点作于点,∵,
,∴,∴,
∵四边形为矩形,∴四边形为矩形,
∴
∴
即在旋转过程中,的值为定值,;
(3)由(2)知:,∴,
又∵,
∴,,
∴
即:;
①当时,的面积,
②当时,∴
解得:,(舍去)
∴当的面积为4.2时,;
【题目】某天上午7:30,小芳在家通过滴滴打车软件打车前往动车站搭乘当天上午8:30的动车.记汽车的行驶时间为t小时,行驶速度为v千米/小时(汽车行驶速度不超过60千米/小时).根据经验,v,t的一组对应值如下表:
V(千米/小时) | 20 | 30 | 40 | 50 | 60 |
T(小时) | 0.6 | 0.4 | 0.3 | 0.25 | 0.2 |
(1)根据表中的数据描点,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;
(2)若小芳从开始打车到上车用了10分钟,小芳想在动车出发前半小时到达动车站,若汽车的平均速度为32千米/小时,小芳能否在预定的时间内到达动车站?请说明理由;
(3)若汽车到达动车站的行驶时间t满足0.3<t<0.5,求平均速度v的取值范围.