题目内容
【题目】求解:已知:如图1,P为△ADC内一点,DP、CP分别平分DP、CP分别平分∠ADC和∠ACD。
(1)如果∠A=60°,那么∠P是多少度;如果∠A=90°,那么∠P是多少度;如果∠A=x°,则∠P是多少度?
(2)如图2,P为四边形ABCD内一点,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并写出你的探索过程;
(3)如图3,P为五边形ABCDE内一点,DP、CP分别平分DP、CP分别平分∠ADC和∠ACD,请直接写出∠P与∠A+∠B+∠E的数量关系。
(4)如图4,P为六边形ABCDEF内一点,DP、CP分别平分DP、CP分别平分∠ADC和∠ACD,请直接写出∠P与∠A+∠B+∠E+∠F的数量关系。
(5)若P为n边形A1A2A3…An内一点,PA1平分∠AnA1A2 , PA2平分∠A1A2A3 , 请直接写出∠P与∠A3+A4+A5+…∠An的数量关系。(用含n的代数式表示)
【答案】
(1)
解答:∵DP、CP分别平分∠ADC和∠ACD,
∴∠PDC= ∠ADC,∠PCD= ∠ACD,
∴∠DPC=180°-∠PDC-∠PCD=180°- (∠ADC+∠ACD)=180°- (180°-∠A)
=90°+ ∠A,
∴如果∠A=60°,那么∠P=120°;如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+ )°
(2)
解答: ∵DP、CP分别平分∠ADC和∠BCD,
∴∠PDC= ∠ADC,∠PCD= ∠BCD,
∴∠DPC=180°-∠PDC-∠PCD=180°- (∠ADC+∠BCD)=180°- (360°-∠A-∠B)
= (∠A+∠B);
(3)
解答:五边形ABCDEF的内角和为:(5-2)180°=540°,
∵DP、CP分别平分∠EDC和∠BCD,
∴∠P= ∠EDC,∠PCD= ∠BCD,
∴∠P=180°-∠PDC-∠PCD=180°- (∠EDC+∠BCD)=180°- (540°-∠A-∠B-∠E)
= (∠A+∠B+∠E)-90°.
(4)
解答:六边形ABCDEF的内角和为:(6-2)180°=720°,
∵DP、CP分别平分∠EDC和∠BCD,
∴∠PDC= ∠EDC,∠PCD= ∠BCD,
∴∠P=180°-∠PDC-∠PCD=180°- (∠EDC+∠BCD)=180°- (720°-∠A-∠B-∠E-∠F)= (∠A+∠B+∠E+∠F)-180°.
(5)
解答:同第一小题可得,∠P= (∠A3+∠A4+∠A5+…∠An)-(n-4)×90°.
【解析】这五小题的做法类似,把求∠P的度数转换成求 (∠EDC+∠BCD),由多边形的内角和可得(∠EDC+∠BCD)与其他内角和的数量关系,从而得∠P.
【考点精析】认真审题,首先需要了解多边形内角与外角(多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°).