题目内容
三角形中,到三边距离相等的点是( )
A. 三条高线的交点 B. 三条中线的交点 C. 三条角平分线的交点 D. 三边垂直平分线的交点
九年级(1)班要举行一场毕业联欢会,规定每个同学同时转动下图中①、②两个转盘(两个转盘分别被二等分和三等分),若两个转盘停止后指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率(要求用画树状图或列表方法求解).
如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是 ( )
A. 2 B. C. D.
在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标_________.
若分式的值为正数,则x的取值范围为______.
下列各式中,从左到右的变形是因式分解的是
A. B.
C. a2-4ab+4b2=(a-2b)2 D. ax+ay+a=a(x+y)
如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).
(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;
(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.
从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是( )
A. B. C. D.
(题文)某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.
(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.
(2)A景区与C景区之间的距离是多少?
(3)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充足电而途中不充电的情况下完成此次任务?请计算说明.