题目内容
从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是( )
A. B. C. D.
袋中装有1个红球,1个白球和1个黄球,它们除颜色外都相同.随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,问两次都摸到红球的概率是多少?(用树状图或列表法求解)
三角形中,到三边距离相等的点是( )
A. 三条高线的交点 B. 三条中线的交点 C. 三条角平分线的交点 D. 三边垂直平分线的交点
如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_____.
不透明的袋子里装有2个红球和1个白球,这些球除了颜色外其他都相同.从中任意摸出一个球,记下颜色后,放回摇匀,再从中摸出一个,则两次摸到球的颜色相同的概率是( )
有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是( )
我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,如果我们规定一个新数“i”,使它满足i2=﹣1(即x2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数“i”进行四则运算,且原有的运算律和运算法则仍然成立,于是有:i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,由于i4n=(i4)n=1n=1,i4n+1=i4n•i=1•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,那么,i9=_______;i2018=_______.
如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示为_________.
作图题:
(1)用直尺和圆规作图(不写作法,保留作图痕迹)在图1中,作△ABC的角平分线BD; 在图2中,作△ABC的高AE;
(2)在图3中,画出下列图形关于直线a的对称图形