题目内容
【题目】完成下面的证明:
如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.
证明:∵BE平分∠ABD(已知),∴∠ABD=2∠α( )
∵DE平分∠BDC( )
∴∠BDC= ( ),∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)
∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=( ),∴AB∥CD( )
【答案】角平分线的定义,已知,2∠β ,角平分线的定义,等量代换,同旁内角互补两直线平行.
【解析】
首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β),进而得到∠ABD+∠BDC=180°,然后再根据同旁内角互补两直线平行可得答案
证明:BE平分∠ABD(已知),
∴∠ABD=2∠α(角平分线的定义).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (角平分线的定义)
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(等量代换).
∴AB∥CD(同旁内角互补两直线平行).
练习册系列答案
相关题目