题目内容
【题目】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过弧BD上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:△ECF∽△GCE;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tan∠G=,AH=3,求EM的值.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
(1)根据平行线的性质可得∠G=∠ACG,再根据圆周角定理可得∠CEF=∠ACG,即∠G=∠CEF,然后根据三角形相似的判定即可得证;
(2)连接OE,根据等腰三角形的性质可得∠GFE=∠GEF=∠AFH,∠OAE=∠OEA,根据题意可得∠AFH+∠FAH=90°,即∠GEF+∠AEO=90°,然后切线的判定即可得证;
(3)如图3中,连接OC,设⊙O的半径为r,在Rt△AHC中,利用三角形函数求得HC=4,在Rt△HOC中,利用勾股定理列出关于r的方程,求解方程得到r=,然后根据平行线的性质得到∠CAH=∠M,进而证明△AHC∽△MEO,再利用相似三角形的性质求解即可.
(1)证明:如图1中,
∵AC∥EG,
∴∠G=∠ACG,
∵AB⊥CD,
∴=,
∴∠CEF=∠ACG,
∴∠G=∠CEF,
∵∠ECF=∠ECG,
∴△ECF∽△GCE.
(2)证明:如图2中,连接OE,
∵GF=GE,
∴∠GFE=∠GEF=∠AFH,
∵OA=OE,
∴∠OAE=∠OEA,
∵∠AFH+∠FAH=90°,
∴∠GEF+∠AEO=90°,
∴∠GEO=90°,
∴GE⊥OE,
∴EG是⊙O的切线.
(3)解:如图3中,连接OC,设⊙O的半径为r,
在Rt△AHC中,tan∠ACH=tan∠G═,
∵AH=3,
∴HC=4,
在Rt△HOC中,∵OC=r,OH=r﹣3,HC=4,
∴(r﹣3)2+42=r2,
∴r=
∵GM∥AC,
∴∠CAH=∠M,
∵∠OEM=∠AHC,
∴△AHC∽△MEO,
∴,
∴,
解得:.