题目内容
【题目】如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的周长之比为1:2,点C的坐标为(﹣2,0),若点B的坐标为(﹣5,1),则点D的坐标为( )
A.(4,﹣2)B.(6,﹣2)C.(8,﹣2)D.(10,﹣2)
【答案】A
【解析】
作BG⊥x轴于点G,DH⊥x轴于点H,根据位似图形的概念得到△ABC∽△EDC,根据相似是三角形的性质计算即可.
作BG⊥x轴于点G,DH⊥x轴于点H,
则BG∥DH,
∵△ABC和△EDC是以点C为位似中心的位似图形,
∴△ABC∽△EDC,
∵△ABC和△EDC的周长之比为1:2,
∴=,
由题意得,CG=3,BG=1,
∵BG∥DH,
∴△BCG∽△DCH,
∴===,即==,
解得,CH=6,DH=2,
∴OH=CH﹣OC=4,
则点D的坐标为为(4,﹣2),
故选:A.
【题目】如图,E为半圆O直径AB上一动点,AB=6,C为半圆上一定点,连接AC和BC,AD平分∠CAB交BC于点D,连接CE和DE.小红根据学习函数经验,分别对线段AE,CE,DE的长度之间的关系进行了探究.下面是小红的探究过程,请将它补充完整:
(1)对于点E在直径AB上的不同位置,画图,测量,得到了线段AE,CE,DE的长度的几组值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
CE/cm | 2.50 | 2.28 | 2.50 | 3.00 | 3.72 | 4.64 | 5.44 |
DE/cm | 2.98 | 2.29 | 1.69 | 1.69 | 2.18 | 3.05 | 3.84 |
AE/cm | 0.00 | 0.87 | 2.11 | 3.02 | 4.00 | 5.12 | 6.00 |
在AECE,DE的长度这三个量中,确定 长度是自变量,自变量的取值范围是 ;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定函数的图象;
(3)结合函数的图象,解决问题:当△ACE为等腰三角形时,AE的长度约为 cm(结果精确到0.01).