题目内容
【题目】阅读下面材料:
对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.
对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.
例如:图1中①的三角形被一个圆覆盖,②中的四边形被两个圆所覆盖.
回答下列问题:
(1)边长为1 cm的正方形被一个半径为r的圆所覆盖,r的最小值是______ cm;
(2)边长为1 cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是_____ cm;
(3)长为2 cm,宽为1 cm的矩形被两个半径均为r的圆所覆盖,r的最小值是_____ cm.这两个圆的圆心距是_____ cm.。
【答案】(1) ;
(2);
(3) , 1.
【解析】试题分析:(1)边长为1 cm的正方形被一个半径为r的圆所覆盖,则r应大于等于正方形对角线的一半,即半径最小为;(2)当圆外接三角形时圆的半径最小,如图,根据勾股定理可求得圆的半径是;(3)根据对称性可知两圆的交点分别是AD和BC的中点,将矩形分成两个相等的小正方形,圆的最小半径就是小正方形的对角线的一半,圆心距就是小正方形的边长.
(1)以正方形的对角线为直径做圆是覆盖正方形的最小圆,半径r的最小值=;
(2) 边长为1 cm的等边三角形被一个半径为r的圆所覆盖,这个最小的圆是正三角形的外接圆,如图作三角形ABC的高AD构成直角三角形ABD,斜边AB=1,BD=,
所以AD=,因为三角形是正三角形,
所以∠ABC=60°,O是外心,所以∠OBC=30°,OD=OB,
设OA=OB=x,则OD=x,
在直角三角形OBD中,根据勾股定理列方程:,
解得:x=.
(3)如图:矩形ABCD中AB=1,BC=2,
则覆盖ABCD的两个圆与矩形交于E、F两点,
由对称性知E、F分别是AD和BC的中点,
则四边形ABFE、EFCD是两个边长为1的正方形,
所以圆的半径r=, 两圆心距= 1.
【题目】为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:
甲、乙射击成绩统计表
平均数 | 中位数 | 方差 | 命中10环的次数 | |
甲 | 7 | |||
乙 | 1 |
(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁将胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?