题目内容

【题目】如图(1),将两块直角三角尺的直角顶点C叠放在一起,

(1)若∠DCE=25°,∠ACB=?;若∠ACB=150°,则∠DCE=?;
(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;
(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.

【答案】
(1)

【解答】∵∠ECB=90°,∠DCE=25°

∴∠DCB=90°﹣25°=65°

∵∠ACD=90°

∴∠ACB=∠ACD+∠DCB=155°.

∵∠ACB=150°,∠ACD=90°

∴∠DCB=150°﹣90°=60°

∵∠ECB=90°

∴∠DCE=90°﹣60°=30°.

故答案为:155°,30°


(2)

【解答】猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)

理由:∵∠ECB=90°,∠ACD=90°

∴∠ACB=∠ACD+DCB=90°+∠DCB

DCE=∠ECB﹣∠DCB=90°﹣∠DCB

∴∠ACB+∠DCE=180°


(3)

【解答】∠DAB+∠CAE=120°

理由如下:

∵∠DAB=DAE+CAE+CAB

故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.


【解析】(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网