题目内容
【题目】(观察探索)用“<”、“>”或“=”完成以下填空,并观察两边算式,探索规律:
(猜想证明)请用一个含字母a、b的式子表示上以规律,并证明结论的正确性;
(应用拓展)比较代数式m2-3mn+1与mn-4n2的大小,并说明理由.
【答案】(1)>;=;(2)a2+b2≥2ab;(3)m2-3m+1>mn-4n2
【解析】
(1)猜想证明:观察几个式子的规律得到结论:两个数的平方和大于或等于这两个数积的2倍.运用完全平方公式和平方数非负性质可证明这个结论.
(2)运用求差法比较m2-3m+1与的大小.把 m2-3m+1-(mn-4n2)整理后配方可知其最小值.
解:(1)猜想:
2×(-3) ×4=-24
∴2×(-3) ×4
=72 2×(-6) ×(-6)=72
∴=2×(-6) ×(-6)
用字母表示这个规律: a2+b2≥2ab
证明:=-2ab+ b2
又≥0
∴-2ab+ b2≥0
∴a2+b2≥2ab
(2) 应用拓展:
m2-3m+1-(mn-4n2)
=m2-3m+1-mn+4n2
=m2-4mn+4n2+1
=(m-2n)2+1
∵(m-2n)2≥0
∴(m-2n)2+1>0
所以m2-3m+1>mn-4n2
【题目】垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表
测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么? (参考数据:三人成绩的方差分别为、、)
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)