题目内容
【题目】边长为整数的直角三角形,若其两直角边边长是方程x2-(k+2)x+4k=0的两根,求k的值,并确定直角三角形三边之长。
【答案】解:设直角边为a,b(a<b),则a+b=k+2,ab=4k,因为方程的根为整数,故△=(k+2)2-16k为完全平方数。
设(k+2)2-16k=n2 ∴k2-12k+4=n2 ∴(k-6)2-n2=32
∴(k+n-6)(k-n-6)=1×32=2×16=4×8
∵k+n-6>k-n-6 ∴
解得 ,k2=15,k3=12
当k2=15时,a+b=17,ab=60 ∴a=15 , b=12 , c=13;当k=12时,a+b=14,ab=48
∴a=6 , b=8 ,c=10
【解析】根据方程的根为整数,得到根的判别式为平方数,然后进行讨论求出k值,得到三角形三边的长.根据直角三角形的直角边是整数,得到方程的根是整数,所以判别式是平方数,讨论求出k的值.然后求出直角三角形三边的长.
【考点精析】利用公式法和求根公式对题目进行判断即可得到答案,需要熟知要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之;根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根.
练习册系列答案
相关题目