题目内容
【题目】我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)在ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.
(1)填空:B′E DE(填“<,=,>”);
(2)求证:B′D∥AC;
(应用与探究)
(3)在ABCD中,已知:BC=4,∠B=60°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是矩形,求AC的长.
【答案】(1)=;(2)见解析;(3)2或4.
【解析】
(1)由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB',得出AE=CE;从而DE=B'E
(2)根据等腰三角形的性质得出DE=B'E,证出∠B′DA=(180∠B′ED),由∠AEC=∠B'ED,得出∠ACB'=∠CB'D,即可得出B'D//AC;
(3)分两种情况:①由矩形的性质得出∠CAB'=90°,得出∠BAC=90°,再由30°直角三角形性质即可求出AC=2;②由矩形的性质和已知条件得出AC=4.
(1)解:∵四边形ABCD是平行四边形,
∴AD=BC,AD//BC,
∴∠EAC=∠ACB,
∵△ABC≌△AB'C,
∴∠ACB=∠ACB',BC=B'C,
∴∠EAC=∠ACB',
∴AE=CE,
∴DE=B′E;
故答案为=.
(2)证明:∵DE=B'E
∴∠C B'D=∠B’DA=(180-∠B'ED)
∵∠AEC=∠B'ED
∴∠AC B'=∠C B'D
∴B'D∥AC
(3)解:情况一:如图1
∵四边形ACDB’是矩形,
∴∠CAB’=90°,
∴∠BAC=90°
∵∠B=60°
∴AC=BC=2
情况二:如图2
∵四边形ACB’D是矩形,
∴∠ACB’=90°
∴∠ACB=90°
∵BC=4,∠B=60°
∴AC=4,
综上所述:ACAC的长为2或4.
【题目】某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:
分组 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合计 |
频数 | 2 | 20 | 16 | 4 | 50 | |
频率 | 0.04 | 0.16 | 0.40 | 0.32 | 1 |
(1)频数、频率分布表中 , ;
(2)补全频数分布直方图;
(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?